- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Pollack, Paul (1)
-
Troupe, Lee (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let s ( n ) = ∑ d ∣ n , d > n d s(n)=\sum _{d\mid n,~d>n} d denote the sum of the proper divisors of n n . The second-named author proved that ω ( s ( n ) ) \omega (s(n)) has normal order log log n \log \log {n} , the analogue for s s -values of a classical result of Hardy and Ramanujan [ The normal number of prime factors of a number n [Quart. J. Math. 48 (1917), 76–92], AMS Chelsea Publ., Providence, RI, 2000, pp. 262–275]. We establish the corresponding Erdős–Kac theorem: ω ( s ( n ) ) \omega (s(n)) is asymptotically normally distributed with mean and variance log log n \log \log {n} . The same method applies with s ( n ) s(n) replaced by any of several other unconventional arithmetic functions, such as β ( n ) ≔ ∑ p ∣ n p \beta (n)≔\sum _{p\mid n} p , n − φ ( n ) n-\varphi (n) , and n + τ ( n ) n+\tau (n) ( τ \tau being the divisor function).more » « less
An official website of the United States government
